Conclusions

- We use 5 different setups for OH abundances in a global CTM, all consistent with constraints on CH$_4$ lifetime and hemispheric [OH] based on MCF observations & constrain the CO sources in the model by using IASI CO columns in a source inversion framework.

- The top-down fluxes are sensitive to the setup: HTAPv2 $\pm 20\%$, biogenic $\pm 15\%$, but comparisons with a wide range of independent CO measurements (FTIR total columns, network surface mixing ratios, aircraft in situ data) \rightarrow the inversion adopting the lowest average OH abundance in NH provides the best match with observations.

- In this best OH setup, the global top-down anthropogenic emissions are by 20% lower than in HTAPv2, by 30% lower in the US (supported by independent studies).

- Results suggest that the NH/SH OH ratio is likely lower (≈ 0.85) than the best estimate (0.97) of Patra et al. (2014), and that the global photochemical CH$_4$ lifetime might be longer (≈ 12.5 years) than the best estimate of Prather et al. (2012).
Purpose of this study

✓ Direct (incomplete combustion) and indirect (HC oxidation) CO sources
✓ CO + OH is a direct sink and CH₄ + OH is the main source → knowledge of OH fields is crucial!
✓ Modelling studies are largely dependent on the representation of OH in the model
✓ Average OH is overestimated by most models in NH → top-down CO emissions are likely too high
→ assess the global CO budget & account for uncertainties on [OH] based on observations

Methods

✓ Use prescribed OH fields satisfying MCF observations, 5 simulations each with different OH field

<table>
<thead>
<tr>
<th>Name</th>
<th>Setup</th>
<th>Global CH₄ lifetime</th>
<th>Interhemispheric ratio NH/SH OH</th>
<th>OH in NH (10⁵ molec/cm³)</th>
<th>SH OH (10⁵ molec/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD</td>
<td>Standard</td>
<td>11.2*</td>
<td>0.97**</td>
<td>9.2</td>
<td>9.5</td>
</tr>
<tr>
<td>NH-H</td>
<td>High OH in NH</td>
<td>9.8</td>
<td>1.10</td>
<td>11.2</td>
<td>10.1</td>
</tr>
<tr>
<td>NH-L</td>
<td>Low OH in NH</td>
<td>12.5</td>
<td>0.85</td>
<td>7.8</td>
<td>9.0</td>
</tr>
<tr>
<td>SH-H</td>
<td>High OH in SH</td>
<td>9.8</td>
<td>0.85</td>
<td>9.8</td>
<td>11.5</td>
</tr>
<tr>
<td>SH-L</td>
<td>Low OH in SH</td>
<td>12.5</td>
<td>1.10</td>
<td>8.8</td>
<td>8.0</td>
</tr>
</tbody>
</table>

* Best estimate for global CH₄ lifetime: 11.2±1.3 years (Prather et al. 2012)
** Models generally fail to reproduce the interhemispheric OH ratio derived from MCF analyses: interhemispheric N/S ratio of 0.97±0.12 (Patra et al. 2014)
Inverting for CO emissions

HTAPv2, Janssens-Maenhout et al. 2015

MEGAN-MOHYCAN
Stavrakou et al. 2014

GFED4s
Giglio et al. 2013

INPUT

Prior emission estimates $G_0(x, t)$

$G_0(x, t) = \sum_{j=1}^{J_2} \Phi_j(x, t)$

$G(x, t) = \sum_{j=1}^{J_2} \exp(f_j) \cdot \Phi_j(x, t)$

New Emission parameters f

Forward IMAGESv2

Modeled global concentrations $H_i(f)$

Cost function $J(f)$

$J(f) = \frac{1}{2} \sum (H_i(f) - y_i)^T E^{-1} (H_i(f) - y_i)^T$

$+ \frac{1}{2} (f - f_0)^T B^{-1} (f - f_0)$

Adjoint of IMAGESv2

Calculate $\nabla J(f)$ using the discrete adjoint of IMAGESv2

No minimum

OUTPUT

Improved set of emission parameters f and emission estimates $G(x, t)$

INPUT

Observed global concentrations y_i

Updated fluxes

http://acsaf.org/products
Results

IASI

NH-L (using HTAPv2)

NH-L (top-down fluxes)

Anthropogenic Fires Isoprene

Flux updates

NH-H

NH-L

A priori STD NH-H SH-H SH-L

0 50 100 150 200 250 300 350 400 450 500 550

0 50 100 150 200 250 300 350 400 450 500 550

0 50 100 150 200 250 300 350 400 450 500 550

0 50 100 150 200 250 300 350 400 450 500 550

NH-H

NH-L

Anthropogenic Biomass Burning Biogenic

Anthropogenic Biomass Burning Biogenic
How do we evaluate the top-down results?

- **Comparisons with FTIR total columns (16 stations):** lowest bias achieved by NH-L inversion with lowest N/S (0.85) and longest CH$_4$ lifetime (12.5 yrs)

- **Comparisons with in situ (128 sites):** best performance realized by the NH-L simulation, worst by NH-H (larger spread than with FTIR)

- **Aircraft campaigns over US**

✓ Overall, the inversion using the lowest [OH] levels in NH achieves the best agreement simultaneously against all tested datasets of CO measurements

✓ US anthropogenic emissions derived in that inversion are consistent with previous estimates based on aircraft campaigns
Thanks to the (many!) data providers, the GAIA-Clim EU project for funding
and the GEIA organizing committee