African Anthropogenic Emissions Inventories for gases and particles from 1990 to 2016

S. Keita¹, C. Liousse², T. Doumbia³, E. N’Datchoch Touré¹,², L. Roblou², V. Yoboué¹, E. Assamoï¹

Conclusion:

- This work provides detailed regional estimates of BC, OC, SO₂, NOₓ, CO, NMVOC for the period 1990-2016 in yearly 0.125°x0.125° maps
- **Main results for 1990 – 2016 emissions**
 - Global increase of anthropogenic emissions expect for flaring emissions
 - Biofuel and open Waste Burning are main contributors of anthropogenic pollutant emissions in Africa
 - For Biofuel particle emissions, fuel wood is the main contributor mainly used in residential sector.
 - For Fossil Fuel particle emissions, Diesel is the main contributor mainly used in traffic sector and other combustion engine.
- **On going works**
 - Works on Uncertainties and future projections are on going
 - Mitigation of emissions will be focused with improvement of cook stoves, on elimination of high emitters in traffic sector, improvement of fossil fuel quality.
METHOD

Anthropogenic source inventories: fuel consumptions (FC) are combined with emission factors (EF) to derive emission inventory at the country level. \(E = FC \times EF \)

FC DATA

For 1990-2014

- United Nations database (UN) 1990-2014, 54 African countries and 22 fuels
- International Energy Agency data (IEA) 1990 – 2014, 28 African countries and all other are aggregated
- Local data (Environment Ministry of Côte d’Ivoire, SIE Côte d’Ivoire, SIE Benin, SIE Togo, SIE Sénégal …)

- For 2015-2016

Hubert’s procedure for segmentation of time series was used → FC data were extrapolated from 2014 to 2020 based on trends for each fuel by sector and country

- For two wheels vehicles

Two-wheel numbers and FC were obtained based on Assamoi and Lioussse, (2010) works: literature and DHS data

- Waste burning

\[WB = P \times MSWp \times Pfrac \times Bfrac = WB_{residential} + WB_{dump} \] (IPCC guideline, Wiedinmyer et al., 2014)

EF DATA

Provided from new ground field measurements (Keita et al., in preparation) and literature
METHOD

FLARING EMISSIONS INVENTORY

- Gas Flaring volume:
 - NOAA DMSP 1992-2011 (Elvidge et al., 2009)
 - NOAA VIIRS 2012-2015 (Elvidge et al., 2015)
- Emission factors (EFx)
 EFx provided from literature (see Doumbia et al., submitted)

DMSP: Defense Meteorological Satellite Program
VIRRS: Visible Infrared Imaging Radiometer Suite

Spatial Distribution of Emission

- Population density given by CIESIN (Gridded Population of the World Future Estimate: GPWFE)
RESULTS: emission trend and sector contribution

BC emission trend and sector contribution

- **BC emissions:**
 - Increase of FF, BF and WB.
 - Decrease of Flaring emissions globally.

- **Total BC Africa 2010:**
 - Relative predominance
 - domestic (40%)
 - waste burning (35%),
 - road traffic (10%),
 - industry (7%),
 - gas flaring (3%)
 - other sector (5%).

(Keita et al. (2) in preparation)
RESULTS: comparison and spatial distribution

COMPARISON WITH PREVIOUS INVENTORIES

- **With** global inventories:
 - **African level**: maximum differences of 40% in 2010
 - Our BC inventory is globally higher
 - **Country level**: various trends exist

- **With Liousse et al. (2014)** (African regional inventory for 2005)
 - Our FF and BF emissions are almost similar for BC (0.64 to 0.68 TgC) and more important for CO (64.43 to 58.6 TgC).
 - This can be explained by the updating of fuel consumption data base and also by the use of new emission factors.

SPATIAL DISTRIBUTION OF BC 2010 EMISSIONS

- **Total BC 2010 emissions in Africa**
 - FF and BF: (0.74 Tg C) → 61.6%
 - (BF: 57.9% wood, FF: 17.8% diesel)
 - WB: (0.43 Tg C) → 35.4%
 - Flaring: (0.036 Tg C) → 3%
 - Nigeria: the most contributing country.
REFERENCES

Acknowledgment
This work has received funding from the European Union 7th Framework Programme (FP7/2007-2013) under Grant agreement no. 603502 (EU project DACCIWA: Dynamics-aerosol-chemistry-cloud interactions in West Africa).