Ammonia Distributions and Recent Trends by Thirteen-year AIRS Measurements

J. X. Warner1, Z. Wei1, L. L. Strow2, R. R. Dickerson1, J. B. Nowak3

1Dept. of Atmospheric and Oceanic Science, UMCP, 2Dept. of Physics and JCET, UMBC, 3Aerodyne Research, INC

Summary:

- AIRS is a NASA satellite using hyperspectral measurements;
- AIRS covers 13-year period from September 2002 through August 2015;
- AIRS retrieved vertical profiles show good agreement (~5 - 15\%) with in situ profiles from the 2013 DISCOVER-AQ field campaign in central California;
- AIRS daily measurements captures the strong continuous \(\text{NH}_3\) emission sources from the anthropogenic (agricultural) source regions, as well as emissions from biomass burning (BB);
- Strong sources include South Asia (India/Pakistan), China, the US, parts of Europe, SE Asia (Thailand/Myanmar/Laos), the central portion of South America, as well as Western and Northern Africa;
- Recent trends from the last 13 years show increased \(\text{NH}_3\) over agricultural regions and decreased over biomass burning regions.

* Submitted to ACP: The Global Tropospheric Ammonia Distribution as seen in the 13-year AIRS Measurement Record
* In Prep: Recent Trends in the Global Tropospheric Ammonia in the 13-year AIRS Measurement Record
* Funded by NASA’s The Science of Terra and Aqua Program (NNX11AG39G), and the Atmospheric Composition Program (NNX07AM45G).
AIRS NH$_3$ at 918 hPa for daytime and land only averaged over Sept. 2002 to Aug. 2015;

- Use Q$_0$; DOFS \geq 0.1;
- High concentrations are mainly due to human activities and fires;
- Use occurrences of higher emissions (lower) to distinguish between the two major sources: agricultural (high VMRs & high frequencies); BB emissions (high VMRs & low frequencies);
- Sources are seen in valleys (e.g., San Joaquin Valley, California in the U.S., the Po Valley, Italy, Fergana Valley, Uzbekistan, and the Sichuan Basin in China); Agricultural especially in irrigated lands (e.g., Azerbaijan, Nile Delta and near Nile River in Egypt, the Mid-West U.S., in the Netherlands, in Mozambique and Ethiopia, Africa, and especially the Indo-Gangetic Plain of South Asia).
• Slopes of linear fit of NH$_3$ VMRs for each 1x1 grid.
• Concentrations of anthropogenic emissions increased and BB decreased
• Trends due to BB are not conclusive due to the short record.
NH$_3$ over USA, China, India, and Europe
Using high concentration and high frequencies

Blue boxes are regions used for follow up trend studies.
NH$_3$ vs SO$_2$ over Mid-US, China, India and Europe

- Decreased SO$_2$ from OMI largely explains the reason of NH$_3$ increases in Midwest U.S., China, and Europe.
- In India, SO$_2$ slightly increase except for 2015, NH$_3$ has not varied significantly.
• NH$_3$ in India seasonal variations are broad and no obvious trends in average;
• NH$_3$ for USA and China are similar, with peaks in both spring and summer;
• NH$_3$ low seasonal changes for Europe.