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Overview: Hydroelectric reservoirs can contribute I{)
a high part of anthropogenic methane (lg\;}elamissions.I

Global estimates of methane emissions from reservéirs

vary i.e.3t0 69 Tg(CH,).yrt @:23) This high uncertainty|
range is related to the lack of data from differept

geographical regions and to the high spatial and tempotalDrawdown area 2. Bubbling

variability in the emissions from one reservoir to another.

Almost no information is available from the subtropigs-organic

and specifically from Asia, which is the place of aI’OUl]L
68% of reported dams.

This work gquantifies, and describes the seasonal
spatial variation of CHl emissions from the 2 year-ol
subtropical Nam Theun 2 Reservoir (NT2, Lao PDI’Q)
systen. |
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Emissions upstream of the dam
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M ethane dynamicsin : Nam Theun 2 (NT2) Reservoir,
Hydroelectric Reservoir I LaosPDR (Sub-Tropics)
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I v' Built on the Nam Theun River
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CH
oxidation at 5. Diffusive }
oxic-anoxic Flux v Annual power density = 13.3 GWh/Rmi
interface

v Surface area = 70 to 450 km Moo A
v’ Average depth =8 3“5:/\/\

v Monomictic reservoir

v Water Residence time = 5-6 mont

v Fortnightly sampling from 29 Sars
monitoring sites since flooding

Flooded organic
matter (soils,
vegetal biomass,
tree trunks

Logend
Rosorvoir (lovol 538 m)
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bacterial activity
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2). Bubbling Fluxes

Individual flces @

mbin average fluxes

Flux=013¢°-37d + 265

3). Diffusive Fluxes from Lake

» Floating chamber (FC) method used durin§ field campaigns
> Gastransfer velocities were calculated from fluxes measured wiE

(CH Fluxes, mmol.m%.¢*

Flux extrapolation from boundary layer equation with average gas transfer velocitigs
T 8 10 12 1 16 applied onfortnightly surface concentrations dataset.
Water depth, m

> Set of10-24 funnels 4 hrs) with water depth ranging fro.5 to 15 m Flux= kg7 *AC

» Mixing ratio of methane betweetd and 80%

> Surface concentrations were measured sampling station (RES1-RES9) on the reservoir

1). Fluxesfrom drawdown area
» Flux determined bytatic chamber
» Samples analyzebly Gas chromatograghwith FID detection
» Fluxes measured at:
lowland (close to shoreline)nidland (flooded during high water levelupland (never flooded)
Flux extrapolation on whole drawdown area with
following considerations
1. Lowland (45%) = uncovered frond to 20 days
2. Midland (29%) = uncovered for more than days
3. Upland (20%) =never flooded part of drawdown which
s s exists only befordirst full impoundment
! e el Note:*values within bracket are average soil moisture
Firsttimefull *+ Lowand — Mdland1 * + Mdand2 = Upland
Starting of
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Flux extrapolations on thereservoirsscale: from May 2009 to December 2011.

following inputs: water depth, atmospheric pressugmperature, water level change, raif a"Wallis, P < 0.05 at 95% confidence interval)
(following methodology in Delon et al., 2007)
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4). Degassing

[Emission =AC* Discharge]

» In the NT2 system, degassing occur§iw sites
Continuous: A. from downstream of the Nakai dam (ecological flow)

B. below the turbines

C. below the regulating pond dam

D. from aeration weir

Occasionally: ~ A. from the spillway

Firsttimefull
impoundment

Sartingot A& Degassing from spillway
Turbine g Total Degassing

z{u A

Jun-08 Oct08 Feb-09 Jun09 Oct-09 Feb-10 Jun-10 Oct-10 Feb-11 Jun-liSep-liDec-1l

5 g 8

g

Degassing, Mg(CH,).d*

Flux= kg1 * AC

» Constant ke (= 10) were used

> Downstream has been divided irftue sections

= Section: area covers tailrace channel (TRC) and regulatorglit
= Section2: area between DCH1 and DCH2

= Section3: area between DCH3 and DCH4

= Section4: area between DCH4 and XBF4

= Section5: area between Nakai dam and NTH7

> Fluxesdecrease with distance from the turbines

Sartingof 8 Weighted-area average fluxes
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5). Diffusive fluxes from downstream 1
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CH, fluxes, mmol.m?2.d*
/

> CH, bubbling flux is modelled witirtificial neural network parameterization using ‘ > Statistically, stationRES9 behaved differently from all other sampling stations (Keis
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Summary and conclusions
1. Changesin total monthly emission from the whole NT 2 system (From May 2009 to December 2011)

» : 3 Bubbl
. : ubbling
Starting of : P2 Diffusion from lake
turbines
E= Diffusion from drawdown
101 Bl Degassing
@D Diffusion from downstream

o

Total emission
(Gg(CHjz).month™)
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2. Annual gross CH, Budget for Year 2010 and 2011(Gg(CH,).y)

Upstream emission

Downstream emission Total Emission

Bubbling Diffusive fluxes from Diffusive fluxes from Degassin Diffusive fluxes from
(water depth <13m)  reservoir surface drawdown Area 9 9 downstream
Year 2010 24 (57%) 6.9 5.6 (16%) 0.7+0.8 (1%) 9.7+ 8.8 (23%) 1.21.1 (3%) 432+16.3
Year 2011 25 (75%) 4.2+ 6.3 (12%) 0.9 +0.6 (1%) 3.2+ 2.5 (9%) 0.2:0.2 (1%) 339498

3. Concluding remarks

1. Relativeimportance of pathways andtemporal variation
a) Bubbling emissions from the reservoir surface is the most important contributdotal CH, emission
b) Minor emissions frondownstream and drawdown diffusion
c) Estimates ofrossand net emissions for year 2010 and 2011 confirmsdecrease in emissions with time
2. Upstream emissions vs. downstream emissions
a) Monomictic nature of NT2 Reservosignificantly reduces downstream emission during wet and cold dry seasons
b) Structural design ofvater intake of turbines in NT2 Reservoir allows a mixing of Cj4poor epilimnion and Cktrich
hypolimnion, causing a significantly lowering of Gldegassing from turbined water.
3. The sum of the quantified CHemission pathways proved NT2 reservoir to be a significanj efritter, aboutwo order of magnitude
higher than pre-impoundment emissiofs3(Gg (CH;,).yr?), leading to a net emission equal42.9+16.0 and33.6 £ 9.6 Gg (CH,).yr for
year 2010 and 2011, respectively.
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