Analysis of trace gas emission and transport during biomass burning events using IASI satellite observations

LMD/IPSL
S. Turquety

LATMOS/IPSL IASI Team
C. Clerbaux, J. Hadji-Lazaro, M. Pommier, M. George

ULB IASI Team
P.-F. Coheur, D. Hurtmans, L. Clarisse
Outline

(1) IASI/METOP trace gas observations

(2) More details on retrievals in fire plumes

(3) Information on emissions?
IASI instrument – Launched Oct. 2006

Launched onboard METOP-A in Oct 2006
MetOp: First European meteorological platform on polar orbit (EPS system)
3 successive satellites: 15 years of data

MetOp

120 spectra along the swath (2400 km)
Each 50 km along the trace

> Up to 1.3×10^6 spectra/day (16Gb)

→ Oct. 19, 2006 MetOp-A launch
→ Jun. 4, 2007 L1C Operational dissemination (Eumetcast)
→ Sep. 27, 2007 L2 (P, T, clouds) operational dissemination
→ Mar. 1, 2008 L2 (trace gases) operational dissemination
IASI instrument – Launched Oct. 2006

- Spectral coverage = 645-2760 cm\(^{-1}\)
- Spectral resolution = 0.5 cm\(^{-1}\)
- Radiometric noise ~ <0.1-0.2 K

Small ground pixel size

Global coverage twice daily (morning and evening orbits)

Medium spectral resolution

High radiometric performances

• 12 km pixel x 4 @ nadir
• 120 spectra along the swath (±48.3° Scan \(\rightarrow\) 2400 km), each 50 km along the trace

Broad spectral coverage without gaps
Measurements and Products

Operational L2 trace gases (EUMETCAST) : O3, CO
Main characteristics of retrievals in research groups ➔ special issue ACPD

NRT Retrievals at LATMOS/CNRS and ULB

CO, O$_3$, HNO$_3$, SO$_2$ in near real time
CO profiles, very soon O$_3$ profiles

Clerbaux et al, ACP IASI Special Issue, 2009

Carbon monoxide (ULB/LATMOS)

April 2008

July 2008

October 2008

January 2009

Clerbaux et al, ACP IASI Special Issue, 2009

Preliminary validation: George et al., ACPD, 2009
A few words about retrieval error...

→ Uncertainty on the radiances (radiometric noise): measurement error
 => only error accounted for in theoretical retrieval error

→ Uncertainty on the atmospheric and surface parameters (e.g. emissivity, temperature and water vapor profiles)

→ Lack of vertical resolution: smoothing error

characterized by the averaging kernel
and the derived degrees of freedom of signal:

$$\mathbf{A} = \frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{x}}$$

$$DOFS = \text{trace}(\mathbf{A})$$

CO profile
19 levels
Degrees of freedom for signal (DOFS)
Validation against in situ observations during the POLARCAT campaign

ARCTAS: DC8
06/18-07/13/2008

POLARCAT-France:
ATR-42
06/30-07/14/2008

POLARCAT-Grace:
Falcon
06/30-07/18/2008

YAK:
07/07-07/29/2008

(M. Pommier, LATMOS)
Example of validation profile

Background air above Greenland (DLR flight)
Siberian pollution (Forest Fire): Flight YAK July 11th 2008

39 IASI pixels along the flight

only +/-1h around the aircraft position
in a box
+-0.2°around the plane

IASI CO vertical distribution vs.
YAK in situ CO measurements:
P. Nédélec, J.-D. Paris

ACE solar occultation

S. Turquety – GEIA – ACCENT
Siberian pollution (Forest Fire): YAK July 11th 2008

Enhancement in the IASI CO in the lower troposphere
BUT not able to resolve the plume shape
Enhancement in the IASI CO in the upper troposphere

BUT

- not able to resolve the plume shape
- too large CO?
- problem of validation:
 large correlation with CO above 12km but no in situ observation…
Case study: Greek fires August 2007

CO burden from fires = 0.321 Tg,
~40% annual anthropogenic emissions in Greece
Evaluation of CO retrievals during the 2007 Greek fires
Comparisons to MOPITT/Terra CO (v3 L2 data)

- IASI background lower
- IASI larger in BB plumes

Strong implication for inversion results!

MOPITT v4: low bias in large plumes corrected
Information on vertical transport?

Total CO, August 25, PM

CO vertical profile along the plume, August 25, PM

Turquety et al., ACP 2009
Wildfires: short lived species detection

Greece fires (August 2007)

August 25, PM

Measurements of short-lived species

Spectral signatures

NH₃

C₂H₄

CH₃OH

August 25, PM

Greece fires (August 2007)

Wildfires: short lived species detection

Coheur et al., ACP 2009
Wildfires: short lived species detection

Greece fires (August 2007)

Chemistry and transport

Slopes vs. CO give enhancements ratios $\Delta[X]/\Delta[CO]$

Enhancement ratios vs. time reveal chemistry in the fire plume

Slower decrease of CH$_3$OH during the first 12 hours

Coheur et al., ACP 2009
Next step: what constraint on BB emissions and impact?

Simulation of fire plume with regional model: need emission inventory!

Total fires in Greece = 0.33 Tg CO
⇒ Very good agreement with IASI top-down calculation

Total fires in Greece = 0.25 Tg CO
⇒ Too low but expected since algorithm was not calibrated for this region
Next step: what constraint on BB emissions and impact?

Simulation of fire plume with regional model: need emission inventory!

Total fires in Greece = 0.33 Tg CO
⇒ Very good agreement with IASI top-down calculation

Total fires in Greece = 0.25 Tg CO
⇒ Too low but expected since algorithm was not calibrated for this region
Evaluation of fire emissions: critical step!!!

MODIS 23-31 August 2007
Confidence level > 80%

Fire Radiative Power (mean grid 0.5°x0.5°)

⇒ Max FRP N. Africa and Balkans
more directly linked with carbon emissions?

Number of fires (total)

⇒ Max nb of fires in Greece…
Where IASI shows clear max…
Summary and Conclusions

Trace gas observations from satellite:
(+) Good spatial and temporal coverage allow the monitoring of plumes
(+) Relatively long records
(-) Lack vertical resolution
(-) Retrieval error often difficult to assess accurately!

Specific retrieval problems for fire plumes:
• Huge pollution: far from the a priori statistics
• Impact of aerosols (probably important for O3)
• LACK VALIDATION DATA

Next steps:
• Analyze observations with a CTM to check the available constraint
• Use model as a intermediate for validation
• Quantify the impact of fires on air quality using the CHIMERE regional model
Thank you for your attention!

Acknowledgements: